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Introduction

Iterated function systems (IFS) provide one of the most popular and simple

method of constructing fractal structures, which has wide applications to data

compression, computer graphics, medicine, economics, earthquake and weather

prediction and many others. Our aim is to characterize attractors of iterated

function systems from a topological point of view. We are going to study topo-

logical properties of compact sets in Rn, invariant under a fixed finite collec-

tion of contractive transformations. We are particularly interested in finding

some topological invariants for these objects and developing a suitable concept

of a topological IFS-attractor.

The iterated function systems were popularized by M.Barnsley, who showed

in [3] to what extent every compactum can be approximated by an attractor

of an IFS. In particular, every compact polyhedron in Rn is an IFS-attractor.

Then P.F.Duvall and L.S.Husch proved [6] that every compact, finite-dimensional

metric space that contains a closed and open Cantor subset can be embedded

in some Euclidean space as an IFS-attractor. This means that IFS-attractors

may have clopen subsets which cannot be represented by iterated function sys-

tems. In this dissertation we show some examples of such sets.

Chapter 1 collects notation, definitions and some basic facts from the theory

of iterated function systems which will be needed later.

Given a metrizable compact space, it is natural to ask when it is home-

omorphic to an IFS-attractor. In Chapter 2 we consider compact, countable

spaces (scattered spaces) in that context and show some classification depend-

ing on the Cantor-Bendixson height. We give an example of a convergent se-

quence in the real line which is not an IFS-attractor and for each countable

ordinal δ we show that a countable compact space of height δ+1 can be embed-

ded in the real line so that it becomes the attractor of some IFS. On the other

hand, we show that a scattered compact metric space of limit height is never

an IFS-attractor.

It is natural to ask for some classification of zero-dimensional spaces in that way.

These spaces—to the knowledge of the author—were not considered from this point
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of view, except the work [4] made by S.Crovisier and M.Rams, who showed that

the Cantor set has a metric such that it fails to be the attractor of even a count-

able system of contractions.

Chapter 3 deals with connected IFS-attractors. A result of M.Kwieciński [15],

later generalized by M.J.Sanders [23], shows the existence of a curve in the plane

that is not an IFS-attractor. In other words, the unit interval (which is ob-

viously an IFS-attractor) has a compatible metric (taken from the plane) such

that it fails being an IFS-attractor. In this direction, we give a general con-

dition on a connected compact space which implies that it has a compatible

metric making it a non-IFS-attractor. We also construct a compact, connected,

2-dimensional space which is no attractor of any weak iterated function system.

Finally, we consider some properties of the harmonic spiral.

It is also natural to ask whether some compact metrizable space is an IFS-

attractor with respect to any compatible metric. A criterion for connected spaces

has already been noticed by M.Hata [11]: a connected IFS-attractor must be lo-

cally connected. He also posed the question whether every finite-dimensional

locally connected continuum is the attractor of some IFS. This problem is dis-

cussed in Chapter 4. We give an example of a connected and locally connected

compact subset of the plane that is not an IFS-attractor in any metric.

In Chapter 5 we consider the notion of the attractor of a topological iter-

ated function system and compare it with results obtained by A.Mihail [17]

and D.Dumitru [5]. We present some basic facts connected with the metriz-

ability of topological IFS-attractors and give several examples which summarize

the results obtained in this dissertation.



Chapter 1

Preliminaries

1.1 Notation and terminology

Throughout the dissertation we will use the following standard notation: (X, d)

will stand for a complete metric space with metric d and B(x, r) will denote

the open ball of radius r > 0 centered at the point x ∈ X. For a function f ,

let fn be the n-times composition f ◦ ... ◦ f . By H(X) we denote the space

of nonempty, compact subsets of X. Given a set A ⊂ X, the symbols A, diam(A)

and |A| stand for the closure, diameter (that is, diam(A) = supx,y∈A{d(x, y)}),
and the number of elements inA, respectively. Let dist(A,B) = infa∈A,b∈B{d(a, b)}
be the distance between nonempty setsA,B ⊂ X and dist(x,B) = infb∈B{d(x, b)}
be the distance between an element x ∈ X and the set B. For arbitrary

set B ⊂ X, a function X ∋ x 7→ dist(x,B) ∈ R is continuous, so for B ∈ H(X)

we have dist(x,B) = minb∈B{d(x, b)}.

1.2 Iterated function systems

Definition 1.1. For every sets A,B ∈ H(X) there exists

distB(A) = max
x∈A

{dist(x,B)}.

The Hausdorff distance between sets A and B is the following

dH(A,B) = max(distA(B), distB(B)).

Remark 1.2. Usually distB(A) ̸= distA(B) (see Figure 1.1).

Lemma 1.3. Let A,B,C ∈ H(X). Then

3



4 CHAPTER 1. PRELIMINARIES
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Figure 1.1: Distances between sets.

(1) A ̸= B ⇔ distB(A) ̸= 0 or distA(B) ̸= 0 .

(2) A ⊂ B ⇔ distB(A) = 0 .

(3) B ⊂ C ⇒ distC(A) ≤ distB(A) .

(4) distC(A ∪B) = max{distC(A),distC(B)} .

(5) distB(A) ≤ distB(C) + distC(A) .

Proof. The four first properties follow immediately from the definition. For

the proof of the last one note that, due to the triangle inequality for the metric

d, for every a ∈ A and c ∈ C we have

dist(a,B) = min
b∈B

d(a, b) ≤

≤ min
b∈B

{d(a, c) + d(c, b)} =

= d(a, c) + min
b∈B

d(c, b) =

= d(a, c) + dist(c,B).

This inequality holds for every c ∈ C, so

dist(a,B) ≤ min
c∈C

d(a, c) + max
c∈C

dist(c,B) = dist(a,C) + distB(C)

for every a ∈ A. The set A is compact, so there exists an element ã ∈ A, such that

dist(ã, B) = max
a∈A

dist(a,B) = distB(A).

Then

distB(A) ≤ dist(ã, C) + distB(C) ≤
≤ max

a∈A
dist(a,C) + distB(C) =

= distC(A) + distB(C),

which completes the proof.
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Using the above lemma it is easy to show that the Hausdorff distance is a met-

ric in the space H(X). Moreover, from [3] and [10] we have the following

Lemma 1.4. If (X, d) is a complete metric space, then (H(X), dH) is again

a complete metric space. Moreover if X is compact, then so is H(X).

The space (H(X), dH) is sometimes called the space of fractals.

Definition 1.5. Given a metric space (X, d), a map f : X → X is called a con-

traction if there exists a constant α ∈ [0, 1) such that for each x, y ∈ X

d(f(x), f(y)) ≤ α · d(x, y).

The least such α is the Lipschitz constant Lip(f).

Definition 1.6. A map f : X → X is called a weak contraction if for each

x, y ∈ X, x ̸= y, it holds that

d(f(x), f(y)) < d(x, y).

It is easily verified that such functions are necessarily continuous and every

contraction is a weak contraction.

Definition 1.7. If X is a complete metric space and F = {f1, ..., fn} is a col-

lection of (weak) contractions f1, ..., fn : X → X, then F is said to be a (weak)

iterated function system (abbrev. IFS).

Definition 1.8. A compact and nonempty set A ⊂ X is called an attractor

of some (weak) iterated function system (briefly, (weak) IFS-attractor) if there

exists F = {f1, ..., fn} a (weak) IFS, such that A =
∪n

i=1 fi(A).

A set, which is an attractor of some (weak) IFS is also called self-similar

or fractal. Moreover, it is a fixed point for the map F : H(X) → H(X) called

the Barnsley-Hutchinson operator which is given for every (weak) IFS F by the for-

mula

F (A) =
∪
f∈F

f(A) for A ∈ H(X).

We also have the following

Theorem 1.9. For each iterated function system F on a complete metric space X

there exists a unique IFS-attractor A. Moreover, for every B ∈ H(X) the attrac-

tor A is the limit of the sequence {Fn(B)}n∈N.

Theorem 1.10. For each weak iterated function system F on a compact met-

ric space X there exists a unique IFS-attractor A. Moreover, for every B ∈ H(X)

the attractor A is the limit of the sequence {Fn(B)}n∈N.



6 CHAPTER 1. PRELIMINARIES

Both theorems are straightforward applications of the classical Banach Con-

traction Principle; its version for weak contractions is called the Edelstein Theo-

rem [7]:

Theorem 1.11. For a compact metric space X and a weak contraction f : X → X

there exists a unique fixed point x. Moreover, for every y ∈ X the point x

is the limit of the sequence {fn(y)}n∈N.

Proof of theorem 1.9. As we would like to use the Banach Contraction Principle

for proving this theorem, we have to show that the Hutchinson-Barnsley opera-

tor F induced by {f1, ..., fn} is a contraction on the space (H(X), dH).

First, let us observe a few simple facts. Let A,B ∈ H(X). The function fi
is a contraction for i = 1, ..., n, so for each of the points a ∈ A and b ∈ B the fol-

lowing inequality holds: d(fi(a), fi(b)) ≤ αi d(a, b), where αi is the Lipschitz

constant for fi. For every a ∈ A choose ba ∈ B, such that

d(a, ba) = min
b∈B

d(a, b) = dist(a,B) ,

then

d(fi(a), fi(ba)) ≤ αi · dist(a,B) ,

so also

dist(fi(a), fi(B)) = min
b∈B

d(fi(a), fi(b)) ≤ αi · dist(a,B) for every a ∈ A .

The set A is compact so for every i = 1, ..., n

distfi(B)(fi(A)) = max
a∈A

dist(fi(a), fi(B)) = dist(fi(ai), fi(B))

for some ai ∈ A. Then

distfi(B)(fi(A)) ≤ αi · dist(ai, B) ≤ αi ·max
a∈A

dist(a,B).

Thus for every contraction fi where i = 1, ..., n and for arbitrary setsA,B ∈ H(X)

we have

distfi(B)(fi(A)) ≤ αi · distB(A). (1.1)

Moreover, fi(A) ⊂ F (A) for each A ∈ H(X) and i = 1, ..., n, so using a property

from Lemma 1.3(3) we obtain

distF (B)(fj(A)) ≤ distfi(B)(fj(A)) for arbitrary i, j ∈ {1, ..., n}. (1.2)

Thus by (1.1) and (1.2), for every i = 1, ..., n it holds that

distF (B)(fi(A)) ≤ distfi(B)(fi(A)) ≤ αi · distB(A) ,
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so also

distF (B)(fi(A)) ≤ max
j=1,...,n

{αj} · distB(A) (1.3)

for every i = 1, ..., n and arbitrary sets A,B ∈ H(X).

Now we show that F is a contraction. By the definition of F and by Lemma 1.3(4)

we have

dH(F (A), F (B)) = max{distF (B)(F (A)), distF (A)(F (B))} =

= max{distF (B)(

n∪
i=1

fi(A)), distF (A)(

n∪
i=1

fi(B))} =

= max{distF (B)(f1(A)), ..., distF (B)(fn(A)), distF (A)(f1(B)), ..., distF (A)(fn(B))}.

By the inequality (1.3) we obtain

dH(F (A), F (B)) ≤ max{ max
j=1,...,n

{αj} · distB(A), max
j=1,...,n

{αj} · distA(B)} =

= max
j=1,...,n

{αj} ·max{distB(A), distA(B)} =

= max
j=1,...,n

{αj} · dH(A,B).

We have already proved that the operator F is a contractive map with Lipschitz

constant equal to αmax = max{α1, α2, ..., αn} < 1. According to the completeness

of X, the space (H(X), dH) is also complete, so from the Banach Contraction

Principle we obtain the assertion.

We prove Theorem 1.10 in analogical way. We have to show that the opera-

tor F is a weak contraction on compact space (H(X), dH) and use Theorem 1.11.

1.3 Dimensions

The main issue in fractal geometry is the notion of dimension. It shows how much

space a set occupies around each of its points. Sometimes it is hard to calcu-

late, however there are some significant theorems concerning dimensions of IFS-

attractors.

The Lebesgue covering dimension is an important dimension and one of the first

dimensions investigated in the literature. It is defined in terms of covering sets,

and is therefore also called the covering dimension or topological dimension.

Definition 1.12. For any topological space X its topological dimension dimX ∈
{−1, 0, 1, 2, ...} is defined in the following way:

• dim ∅ = −1.
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• dimX = n if this is the smallest integer, such that every finite open cover U
of X admits a finite open cover V of X which refines U and such that

no point is included in more than n+ 1 elements of V.

• dimX = ∞ if no integer n satisfies the previous condition.

Definition 1.13. A topological space is zero-dimensional if it has a base con-

sisting of clopen sets.

Initially, in 1971, R.F.Williams [27] investigated the topological structure

of IFS attractors. He noted among others that

Theorem 1.14. For each iterated function system F = {f1, ..., fn} on a complete

metric space X, if

Lipf1 + ...+ Lipfn < 1

then its attractor A is zero-dimensional.

and

Theorem 1.15. If f, g : R → R are contractive bijections with distinct fixed points

and

(Lipf−1)−1 + (Lipg−1)−1 ≥ 1

then the attractor A of {f, g} is a closed line interval.

Probably the most important ‘fractal dimension’ is the Hausdorff dimension,

based on Carathéodory’s idea of defining measures using coverings of sets.

Recall that for a positive number δ, a countable (or finite) family U = {Ui}i∈N
of sets of diameter at most δ that covers K ⊂ X, is called a δ-cover of K.

Definition 1.16. For s ≥ 0 and δ > 0 we define the s-dimensional Hausdorff

measure of K ∈ H(X) as

Hs(K) = lim
δ→0

inf
{ ∑

U∈U
diam(U)s : U is a δ-cover of K

}
.

This limit exists for any subset K of X, though the limiting value can be

(and usually is) 0 or ∞. Let us consider a graph of Hs(K) against s (Figure 1.2).

It turns out that there is a critical value of s at which Hs(K) changes from ∞
to 0. This critical value is called the Hausdorff dimension of K, and writ-

ten dimH K. If s = dimH K, then Hs(K) may be zero, positive or infinite.

Formally

Definition 1.17. The Hausdorff dimension of a setK ∈ H(X) is given by the for-

mula

dimH K = inf{s ≥ 0 : Hs(K) = 0} = sup{s : Hs(K) = ∞}.
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∞

s

0
s

H (K)

dimH K

Figure 1.2: Graph of Hs(K) against s for a set K shows the Hausdorff dimension
of K.

Hausdorff measures generalize the familiar ideas of length, area, volume, etc,

and have the scaling property. Hausdorff dimension satisfies many properties like

monotonicity, countable stability and some transformation properties which are

expected to hold for any reasonable notion of dimension. In particular Hausdorff

dimension is invariant under bi-Lipschitz transformations, but not under home-

omorphisms. This means that it is not a topological invariant, unlike the topo-

logical covering dimension.

The fundamental theorem of fractal theory claims that dimX ≤ dimH X

holds for every space X. However, E. Szpilrajn∗ [26] proved in 1937 that for

every metrizable separable space X there exists a homeomorphism h such that

dimH h(X) = dimh(X) = dimX.

A wide variety of other notions of dimension have been introduced. Fun-

damental to most of them is the idea of measurement at scale δ: for every

positive δ, we measure a set in a way which ignores irregularities of size less

than δ, and we see how these measurements (usually in logarithmic scale) behave

when δ → 0. Equivalent definitions of Hausdorff, box dimensions and others

can be find in [9].

The Hausdorff dimensions are very hard to compute in practice, because

none of the available definitions are very constructive. However, for some IFS-

attractors it can be determined explicitly. First we know from [8, 6.4.10], that

Theorem 1.18. Every IFS-attractor has finite topological and Hausdorff dimen-

sion. Moreover, if a set K is the attractor of an IFS {f1, ..., fn}, then

dimK ≤ dimH K ≤ s

where s > 0 is the unique number such that
∑n

i=1(Lipfi)
s = 1.

∗Edward Marczewski
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In 1981 J.E. Hutchinson [12] showed that dimH K = s if the IFS satisfies

the open set condition:

Definition 1.19 (Open Set Condition). An iterated function system F satisfies

the open set condition if there exists an open set V in a space X such that

all the images f(V ) for f ∈ F are pairwise disjoint and contained in V .

This condition guarantees that we can distinguish the pieces of IFS-attractor.

The idea goes back to M.Moran [18] who studied similar constructions without

referring to mappings.



Chapter 2

Scattered spaces as attractors of

iterated function systems

We study countable compact spaces as potential attractors of iterated function

systems. We address the question when a scattered space X is homeomorphic

to the attractor of some iterated function system or, in other words, when there

exists a compatible metric on X such that X becomes an IFS-attractor.

It is obvious that each finite set is an IFS-attractor in every metric space.

We present an example of a convergent sequence of real numbers (a countable

compact set in R), which is not an IFS-attractor. We further investigate more

complicated scattered compact spaces and classify them with respect to the prop-

erty of being homeomorphic to IFS-attractors. Namely, we show that every count-

able compact metric space of successor Cantor-Bendixson height with a single

point of the maximal rank can be embedded topologically in the real line so that

it becomes the attractor of an IFS consisting of two contractions whose Lip-

schitz constants are as small as we wish. On the other hand, we show that

if a countable compact metric space is an IFS-attractor in some metric, then

its Cantor-Bendixson height cannot be a limit ordinal.

Combining our results, we get an example of a countable compact metric

space K (namely, a space of height ω + 1) which is an IFS-attractor, however

some clopen subset of K is not an IFS-attractor, even after changing its metric

to an equivalent one.

The results of this chapter are contained in our paper [20].

11
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FUNCTION SYSTEMS

2.1 Basic information about scattered spaces

We recall some basic notions related to scattered spaces. A topological space X

is called scattered iff every nonempty subspace Y has an isolated point in Y . It is

well known that a compact metric space is scattered if and only if it is countable.

Moreover, every compact scattered space is zero-dimensional.

For a scattered space X, let

X ′ = {x ∈ X : x is an accumulation point of X}

be the Cantor-Bendixson derivative of X. Inductively, define:

• X(α+1) = (X(α))′

• X(α) =
∩

β<αX
(β) for a limit ordinal α.

In general, the setX(α)\X(α+1) is called the αth Cantor-Bendixson level ofX. For

an element x of a scattered spaceX, its Cantor-Bendixson rank rk(x) is the unique

ordinal α such that x ∈ X(α) \X(α+1). The height of a scattered space X is

ht(X) = min{α : X(α) is discrete}.

These are topological invariants of scattered spaces and their elements.

By the definitions and transfinite induction it is easy to prove that for every

compact, scattered spaces U and V the following properties hold:

• if U ⊂ V then ht(U) ≤ ht(V );

• ht(U ∪ V ) = max(ht(U), ht(V ));

• ht(f(U)) ≤ ht(U) for every continuous function f ;

• ht(U) ≥ rk(x) for every open neighborhood U of x.

The classical Mazurkiewicz-Sierpiński theorem [16] claims that every count-

able compact scattered spaceX is homeomorphic to the space ωβ·n+1 with the or-

der topology, where β = ht(X) and n = |X(β)| is finite. We shall consider

scattered compact spaces of that form.

2.2 Properties of disjoint unions of IFS-attractors

We present two simple properties which will be needed later.

Lemma 2.1. Suppose X =
∪

i<nXi is a metric space, where each Xi is compact

and isometric to X0 and dist(Xi, Xj) > diam(X0) for every i < j < n. If X

is a weak IFS-attractor then so is X0.
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Proof. Let {fi}ki=1 be a weak IFS such that X =
∪k

i=1 fi(X). Note that if f

is a weak contraction and f(Xi) ∩X0 ̸= ∅ then f(Xi) ⊂ X0, because for j > 0

diam(f(Xi)) < diam(Xi) = diam(X0) < dist(X0, Xj).

For each i let hi be an isometry from X0 onto Xi. Denote by S the set of all

pairs (i, j) such that fi(Xj) ⊂ X0. By the remark above, X0 =
∪

(i,j)∈S fi(Xj).

Thus, X0 is the attractor of an IFS consisting of weak contractions of the form

fi ◦ hj where (i, j) ∈ S.

Lemma 2.2. Assume X = A∪B is a compact metric space, where A,B are clopen

and disjoint IFS-attractors. Then X is an IFS-attractor.

Proof. Given an IFS F , given k ∈ N, denote by Fk the collection of all composi-

tions f1 ◦ f2 ◦ · · · ◦ fk, where f1, . . . , fk ∈ F (possibly with repetitions). Then Fk

is another IFS with the same attractor. Moreover, if r = maxf∈F Lip(f) < 1

then rk ≥ maxg∈Fk Lip(g).

We may assume that both sets A, B are nonempty and that 1 = diam(X).

Let ε = dist(A,B). In view of the remark above, we may find two iterated func-

tion systems F and G on A and B respectively, such that A and B are their attrac-

tors, and the maximum of all Lipschitz constants of the contractions in F and G
is < 1

2ε. In particular, diam(h(A)) < 1
2ε whenever h ∈ F and diam(h(B)) < 1

2ε

whenever h ∈ G.
Extend each f ∈ F to a map f ′ : X → X by letting f ′(B) = {pf}, where pf

is any fixed element of f(A). Observe that the Lipschitz constant of f ′ is ≤ 1
2 ,

because given x ∈ A, y ∈ B, we have

d(f ′(x), f ′(y)) ≤ diam(f(A)) <
1

2
ε =

1

2
dist(A,B) ≤ 1

2
d(x, y).

Similarly, extend each g ∈ G to a map g′ so that g′(A) = {pg}, where pg ∈ g(B).

Again, g′ has Lipschitz constant ≤ 1
2 .

Finally, {f ′}f∈F ∪ {g′}g∈G is an IFS whose attractor is X.

It is a natural question whether the converse to Lemma 2.2 holds. As we shall

see later, this is not the case. Finite unions of IFS-attractors were also considered

in [25].

2.3 Convergent sequences

In this section we construct a convergent sequence in the real line, which is not

a weak IFS-attractor. This example, also studied in [24], can be used for the

construction of non-IFS-attractors in higher dimensions.

When we consider a sequence {xn}n∈N as a possible attractor of an iterated

function system in R, we identify that sequence with the closure {xn : n ∈ N}.
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We say that a sequence {xn}n∈N is an IFS-attractor if so is {xn : n ∈ N}.

Every geometric convergent sequence is an IFS-attractor. For example the set

{0} ∪ { 1
2n }n∈N is an attractor of the IFS {f1(x) = x

2 , f2(x) = 1}. We will give

an example of a convergent sequence which is not an attractor of any IFS in R.

Theorem 2.3. There exists a convergent sequence K ⊂ R which is not the at-

tractor of any weak iterated function system in R.

The construction of K is inspired by the example of a locally connected contin-

uum which is not the attractor of any IFS on R2, constructed by Kwieciński [15].

We construct the sequence K as follows. The main building block is the set

F (a, k), for a > 0 and k ∈ N, defined by

F (a, k) =
{ ia
k
: i = 0, . . . , k − 1

}
.

Note that for every distinct x, y ∈ F (a, k) we have that d(x, y) ≥ a
k > 0, therefore

if d(x, y) < a
k , then x = y.

Now, let an = 1
3·2n−1 and kn = n(kn−1 + · · ·+ k1) where k1 = 1. Then

Fn = F (an, kn) +
1

2n−1

where A+ x is the set {a+ x : a ∈ A}.

F1F2F3F4F5
...

0 0.25 0.5 1

Figure 2.1: The sequence K.

The set K is defined to be the union

K = {0} ∪
∞∪
n=1

Fn .

It is clear that K consists of a decreasing sequence and its limit point. Note

that:

1. the sequence {an
kn
}n∈N+ is decreasing;

2. the sequence {dist(Fn, Fn+1)}n∈N+ is decreasing;

3. for all n ∈ N+ we have

diam(Fn) ≤ an < dist(Fn, Fn+1).
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The idea behind the construction of K is that weak contractions on that set

behave in a specific way. In particular we have the following

Lemma 2.4. For a weak contraction f : K → K either

f(Fn) ⊂ K \ (F1 ∪ · · · ∪ Fn) for all n ∈ N+

or else the set f(K) is finite.

Proof. Let f be a weak contraction on K satisfying f(0) ̸= 0. This means

that f(0) is an isolated point of K. The function f is continuous, so there

exists an open neighborhood U of 0, such that f(U) = {f(0)}. Thus, the set

f(K) = f(U) ∪ f(K \ U) is finite.

Assume now that f(0) = 0. For each n ∈ N+ there exists x ∈ Fn such that

d(0, x) = dist(0, Fn). Then for such x we obtain d(0, f(x)) < d(0, x) = dist(0, Fn)

which implies f(x) ∈ K \ (Fn ∪ · · · ∪ F1) and by (3) we have

diam(f(Fn)) < diam(Fn) < dist(Fn, Fn+1) = dist(Fn,

∞∪
i=n+1

Fi).

This implies that f(Fn) ∩ (F1 ∪ · · · ∪ Fn) = ∅.

Proof of Theorem 2.3. Suppose that K is the attractor of an iterated function

system F = {f1, f2, . . . , fr} consisting of weak contractions in R. That is,

K =
∪r

i=1 fi(K). By Lemma 2.4, we know that there are two kinds of weak

contractions f on K:

(i) f(K) is finite;

(ii) for all n ∈ N+ it holds that f(Fn) ⊂ K \ (F1 ∪ · · · ∪ Fn).

Now, re-enumerating F , we can write the setK as the unionK =
∪m

i=1 fi(K)∪ S
wherem ≤ r, the functions fi for i = 1, . . . ,m satisfy (ii) and the set S =

∪r
i=m+1 fi(K)

is finite. This implies that

Fn ⊂
m∪
i=1

fi(Fn−1 ∪ · · · ∪ F1) ∪ S .

Indeed, if x ∈ Fn then x = f(y) for some f ∈ F and y ∈ K. If f is of type (i),

then x ∈ S. Otherwise y ∈ Fn−1 ∪ · · · ∪ F1, because of (ii).

Since S is finite, for n big enough we have that Fn ⊂
∪m

i=1 fi(Fn−1 ∪ · · · ∪F1)

so

kn = |Fn| ≤ |
m∪
i=1

fi(Fn−1 ∪ · · · ∪ F1)| ≤ m(kn−1 + · · ·+ k1) .

But kn = n(kn−1 + · · ·+ k1) so for n > m we get a contradiction.
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Practically the same argument works for a metrizable compact space with a count-

able number of connected components which converge to one point. It is enough

to replace points by the connected components of the space.

Theorem 2.5. A compact space in Rn with a countable number of connected

components which converge to one point can be topologically transformed such that

it is not the attractor of any weak iterated function system.

Proof. We assume that X = {0}∪
∪∞

n=1Xn in Rn, where each Xn is a connected,

pairwise disjoint, closed and open subset ofX and dist(0, Xn) → 0, diam(Xn) → 0

when n→ ∞. We can topologically transform the space X such that:

• the spacesXk are gathered in blocks {Fn}∞n=1 which accumulate to 0, that is

dist(0, Fn) ↘ 0, diam(Fn) ↘ 0 when n→ ∞;

• each block Fn contains kn spaces of the form Xk;

• for every n ≥ 1 it holds that

diam(Fn) ≤ dist(Fn,

∞∪
i=n+1

Fi). (*)

Analogously to the proof of Theorem 2.3, we can show that there are two kinds

of weak contractions f on X:

(i) f(X) covers only finitely many sets Xn

(ii) for all n ≥ 1 we have that f(Fn) ⊂ X \ (Fn ∪ · · · ∪ F1).

To show this dichotomy we have to use (*) and the fact that continuous images

of the connected sets Xn are connected.

Now we can omit contractions of the first type, as in the proof of Theorem 2.3,

and we claim that if X is a weak IFS-attractor, then for n big enough and for

some fixed weak contractions f1, . . . , fm satisfying (ii) we have that

Fn ⊂
m∪
i=1

fi(Fn−1 ∪ · · · ∪ F1).

Thus, the number of connected components of Fn must be less than or equal

to the number of connected components of
∪m

i=1 fi(Fn−1 ∪ · · · ∪ F1). In other

words,

kn ≤ m(kn−1 + · · ·+ k1),

therefore for n > m we get a contradiction by the definition of kn.



2.3. CONVERGENT SEQUENCES 17

In fact, every compact scattered space can be embedded topologically in the real

line so that its image is not an attractor of any weak IFS. We prove this result

below, using the same idea as for the convergent sequence and Theorem 2.5.

Theorem 2.6. A compact scattered metric space with successor height can be

embedded topologically in the real line so that it is not the attractor of any weak

iterated function system.

Proof. First, we use the idea of the proof of Theorem 2.3 for the space homeo-

morphic to ωδ + 1, where δ = α+ 1 is a fixed successor ordinal.

Let us consider such a space written as X = {0} ∪
∪∞

n=1Xn, where each Xn

is homeomorphic to ωα + 1 and Xn ∪ Xm = ∅ whenever n ̸= m. We can topo-

logically embed the space X into the real line like in the proof of Theorem 2.5,

gathered in blocks {Fn}∞n=1. Once again we may show that there are two kinds

of weak contractions f on X:

(i) f(X) covers only finitely many sets Xn

(ii) for all n ≥ 1 we have that f(Fn) ⊂ X \ (Fn ∪ · · · ∪ F1).

It is enough to use (*) and the fact that it is impossible to cover the space X using

finitely many spaces of height < δ. Using the same arguments like in Theorem 2.3

we claim that if X is a weak IFS-attractor, then for n big enough we have that

Fn ⊂
m∪
i=1

fi(Fn−1 ∪ · · · ∪ F1)

where fi for i = 1, ...,m satisfy (ii). Then

kn = |F (α)
n | ≤

∣∣∣( m∪
i=1

fi(Fn−1 ∪ · · · ∪ F1)
)(α)∣∣∣ ≤ m(kn−1 + · · ·+ k1)

which gives a contradiction when n > m.

We have already shown that every space ωδ+1 of successor height can be em-

bedded topologically in the real line so that it is not an attractor of any weak

IFS. To show that each ωδ ·n+1 has the same property, we place on the real line

n isometric copies X1, . . . , Xn of the space constructed before (homeomorphic

to ωδ + 1) so that

diam(Xk) = diam(Xk+1) < dist(Xk, Xk+1)

for every k = 1, . . . , n−1. By Lemma 2.1 we conclude that ifX1 is not an attractor

of any weak IFS then neither is X = X1 ∪ · · · ∪Xn.

We have proved Theorem 2.6 only for compact scattered spaces of successor

height. It turns out, that spaces of limit height are never weak IFS-attractors

as will be shown in the next section.
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2.4 Scattered spaces of limit height

Theorem 2.7. A compact scattered metric space of limit Cantor-Bendixson

height is not homeomorphic to any IFS-attractor consisting of weak contractions.

Proof. Due to Mazurkiewicz-Sierpiński’s theorem, such a space is of the form

K = ωδ · n + 1, where δ = ht(K) > 0 is a limit ordinal. We assume that K
has a fixed metric d and F is a weak IFS on K. Suppose that K =

∪
f∈F f(K),

so there exists a weak contraction f ∈ F such that ht(f(K)) = δ. Consequently

the set F1 = {f ∈ F : ht(f(K)) = δ} is nonempty. Let F0 = F \ F1 and

µ = max({0} ∪ {ht(f(K)) : f ∈ F0}). Then µ < δ. We will consider the Cantor-

Bendixson rank rk(x) of points with respect to the space K. Denote by D the set

of points of rank δ. Note that D = K(δ) is finite.

Claim 2.8. If f ∈ F1 then D ∩ f(D) ̸= ∅.

Proof. Let f ∈ F1 and suppose D∩f(D) = ∅, so for every x ∈ D the rank of f(x)

is less than δ. Choose a neighborhood Vx of f(x) such that Vx ∩ D = ∅. Then

ht(Vx) < δ. Find a clopen neighborhood Wx of x such that f(Wx) ⊂ Vx.

Then ht(f(Wx)) is also less than δ. Define W =
∪

x∈DWx. Then the set

f(K) = f(W ) ∪ f(K \W ) has height < δ, which gives a contradiction.

We now come back to the proof of Theorem 2.7.

If the set D = {x0} is a singleton, then by Claim 2.8 we know that f(x0) = x0
for every f ∈ F1. Now, let ϱ be such that δ > ϱ > µ. It exists, because δ is a limit

ordinal. In the case where the set D consists of more than one element, define

ε = min{d(x, y) : x ̸= y, x, y ∈ D ∪
∪

f∈F1

f(D)} > 0.

Due to the fact that D = K(δ) =
∩

ξ<δ K(ξ), there exists an ordinal ϱ such that

µ < ϱ < δ and

K(ϱ) = {x ∈ K : rk(x) ≥ ϱ} ⊂
∪
x∈D

B(x,
ε

2
).

Let A = K(ϱ). It is clear that A is closed in K and A \D is nonempty, because δ

is a limit ordinal. Define

α = sup
x∈A

dist(x,D) > 0.

The set A is compact, so there exists an element a ∈ A such that dist(a,D) = α

and ϱ ≤ rk(a) < δ. This means that for every open neighborhood U of a we have

ht(U) ≥ rk(a) ≥ ϱ.

Note that given f ∈ F1, if a ∈ f(K) then the distance between the set

f−1(a) and the set D is greater than α. Indeed, for each x ∈ f−1(a) there exist
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x0, a0 ∈ D such that d(x, x0) = dist(x,D) and d(a, a0) = dist(a,D) = α. We first

consider the case f(x0) ∈ D. Then we have

d(x, x0) > d(f(x), f(x0)) = d(a, f(x0)) ≥ dist(a,D) = α.

In the case f(x0) /∈ D the set D has more than one element. Note that α ≤ ε
2 ,

because A ⊂
∪

x∈D B(x, ε2). Moreover d(a0, f(x0)) ≥ ε. Thus, by the weak

contracting property of f and by the triangle inequality we have

d(x, x0) > d(a, f(x0)) ≥ d(a0, f(x0))− d(a, a0) ≥ ε− α ≥ ε

2
≥ α.

Consequently dist(x,D) > α for every x ∈ f−1(a).

Thanks to that, we can find a clopen neighborhood U of a, such that f−1(U)∩A
is empty for every f ∈ F1. It follows that ht(f

−1(U)) < ϱ.

As the space K is the attractor of F , we have U =
∪

f∈F f(f
−1(U)). If f ∈ F0

then ht(f(f−1(U))) ≤ ht(f(K)) ≤ µ < ϱ. If f ∈ F1 then we know that

ht(f(f−1(U))) ≤ ht(f−1(U)) < ϱ. We finally get a contradiction by applying

the fact that

ht(U) = max
f∈F

{ht(f(f−1(U)))} < ϱ.

This completes the proof.

2.5 Scattered spaces of successor height

Recall that every countable scattered compact space is homeomorphic to an or-

dinal ωβ · n+ 1, with the order topology. We start with the case n = 1.

Theorem 2.9. For every ε > 0 and every countable ordinal δ the scattered

space ωδ+1 + 1 is homeomorphic to the attractor of an iterated function system

consisting of two contractions {φ,φδ+1} in the unit interval I = [0, 1], such that

max(Lip(φ),Lip(φδ+1)) < ε.

To prove this theorem we shall use the notion of a monotone ladder system.

We shall denote by LIM(α) the set of all limit ordinals ≤ α.

Definition 2.10. Let α be an ordinal. A monotone ladder system in α is a col-

lection of sequences {cαn(β) : n ∈ N , β ∈ LIM(α)} such that

• for each ordinal β ∈ LIM(α) the sequence {cαn(β)}n∈N is strictly increasing

and converges to β when n→ ∞;

• for every β, γ ∈ LIM(α) if β ≤ γ then cαn(β) ≤ cαn(γ) for every n ∈ N.
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We shall need monotone ladder systems for our construction. Their existence

is rather standard, we give a proof for the sake of completeness.

Lemma 2.11. For every countable ordinal α there exists a monotone ladder

system in α.

Proof. We prove that lemma by transfinite induction on limit ordinals ≤ α. Set-

ting cωn(ω) = n, we obtain a monotone ladder system in ω.

Now suppose that α is a limit ordinal and for all limit ordinals α′ < α there ex-

ists a monotone ladder system {cα′
n (β) : n ∈ N , β ∈ LIM(α′)} in α′. We have

to construct such a system in α.

If α = α′ + ω then

cαn(β) = cα
′

n (β) for every β ∈ LIM(α′)

and

cαn(α) = α′ + n.

It is obvious that this is a monotone ladder system in α.

Now suppose that α is a limit ordinal among limit ordinals and choose a strictly

increasing sequence {αn}n∈N such that α0 = 0, αn ∈ LIM(α) for n > 0 where

α = supn∈N αn.

Given a limit ordinal β < α there exists a natural number n0 such that

αn0 < β ≤ αn0+1. Let

c̄n(β) = max(αn0 , c
αn0+1
n (β)).

Note that {c̄n(β) : n ∈ N , β ∈ LIM(α), β < α} is a monotone ladder system:

for any limit ordinals β ≤ γ < α there exist natural numbers n0 and m0 such that

αn0 < β ≤ αn0+1 and αm0 < γ ≤ αm0+1. If n0 < m0 then for all n ∈ N

c̄n(β) ≤ αn0+1 ≤ αm0 ≤ c̄n(γ).

If n0 = m0 then by the inductive hypothesis for αn0+1 we have

c̄n(β) = max(αn0 , c
αn0+1
n (β)) ≤ max(αm0 , c

αm0+1
n (γ)) = c̄n(γ).

Now we construct a monotone ladder system in α as follows. For every β < α

and n ∈ N define

cαn(β) = min(αn, c̄n(β)) and c
α
n(α) = αn.

Note that for every limit ordinals β ≤ γ ≤ α, if γ < α then cαn(β) ≤ cαn(γ),

because {c̄n(β) : n ∈ N , β ∈ LIM(α), β < α} was monotone. In the case γ = α

we have cαn(β) = min(αn, c̄n(β)) ≤ αn = cαn(α). This means that the set

{cαn(β) : n ∈ N , β ∈ LIM(α)} is indeed a monotone ladder system in α.

Finally, note that for any limit ordinal α, its monotone ladder system is also

a monotone ladder system in every successor ordinal β, such that α < β < α+ ω.
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Proof of Theorem 2.9. Fix a countable ordinal number δ. We have to construct

an IFS-attractor homeomorphic to the space ωδ+1+1. By Lemma 2.11, there ex-

ists a monotone ladder system for δ′ = δ + ω. For every ordinal α ≤ δ define

a sequence {αn}n∈N such that

• if α is a limit ordinal, we put αn := cδ
′

n (α)

• if α is a successor ordinal, we put αn := cδ
′

n (α+ ω)

Note that for every α, β ≤ δ if α ≤ β then αn ≤ βn for all n ∈ N.

Let r > 3. For a natural number n consider the affine homeomorphism

sn(x) =
x

rn
+

1

rn
.

Now for every ordinal α ≤ δ+1 we construct scattered compact sets Lα,Kα ⊂ [0, 1],

homeomorphic to ωα + 1, as follows:

1. L0 = {0},

2. Lα = L0 ∪
∪

αn<α sn(Lαn)∪
∪

αn≥α sn(Lα′) for a successor ordinal α = α′ +1,

3. Lα = L0 ∪
∪∞

n=1 sn(Lαn) for a limit ordinal α.

Now define

(a) K0 = L0,

(b) Kα+1 = K0 ∪
∪∞

n=1 sn(Kα),

(c) Kα = Lα for a limit ordinal α.

Each of these spaces consists of blocks contained in sn(I), each block is a space

of a lower height and they accumulate to 0.

s (K  )α

α+1K
3 { {s (K  )α2 s (K  )α1{

1
r

1
r

1
r 3 2

s (L )α

αK
3 { {s (L )α2 s (L )α1{ 123

Figure 2.2: The spaces Kα.

Now we make the following definition of an iterated function system {φ,φδ+1}
such that φ(Kδ+1) ∪ φδ+1(Kδ+1) = Kδ+1. We use the contraction

φ(x) =
x

r
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s (L )α’

αL
3{ {s (L )α2 s (L )1{

1
r

1
r

1
r 3 2

2 α 1

...  s (L )α’4

Figure 2.3: An example of Lα where α = α′ + 1 and α2 < α ≤ α3.

that shifts every block contained in sn(I) onto the next block, contained in sn+1(I).

In particular

φ(Kδ+1) = Kδ+1 \ s1(Kδ).

Now we define φδ+1 = s1◦fδ where fδ is defined below, with the use of additional

functions gα. Namely, for every α ≤ δ we define

1. g0(x) =

{
0, x ∈ [0, 2r ],
r

r−2(x− 2
r ), x ∈ (2r , 1];

2. gα(x) =


sn(gαn(s

−1
n (x))), x ∈ sn(I) and αn < α, n ≥ 1,

sn(gα′(s−1
n (x))), x ∈ sn(I) and αn ≥ α, n ≥ 1,

x, otherwise

whenever α = α′ + 1 is a successor ordinal;

3. gα = fα for α a limit ordinal.

Finally, define

1. f0 = g0;

2. fα+1(x) =

{
sn(fα(s

−1
n (x))), x ∈ sn(I), for some n ≥ 1,

x, otherwise;

3. fα(x) =

{
sn(gαn(s

−1
n (x))), x ∈ sn(I), for some n ≥ 1,

x, otherwise

for a limit ordinal α (see Figure 2.4).

Note that the functions fα and gα are continuous and Lip(fα) = Lip(gα) =
r

r−2 ,

so

Lip(φδ+1) = Lip(s1) · Lip(fδ) =
1

r − 2
< 1.

Moreover max(Lip(φ),Lip(φδ+1)) =
1

r−2 thus for every ε > 0 we can find r > 3,

such that 1
r−2 < ε.

Now we show that for every ordinals α, β ≤ δ the following properties hold:

(A) gα(Lβ) = Lα when α ≤ β;
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f1

1
r

2
r

1
r2

f0

Figure 2.4: The functions f0 and f1 with r = 4.

(B) fα(Kα+1) = Kα.

Proof of property (A). The proof is by transfinite induction on β. For β = 0

it is true that g0(L0) = L0.

In the second step we assume that for every β′ < β and each α′ ≤ β′ it holds

that gα′(Lβ′) = Lα′ . Let us consider four cases where α ≤ β. Note that in each

case αn ≤ βn for all n ∈ N.
Case 1. α and β are limit ordinals (in particular αn ↗ α and βn ↗ β). Then

by the inductive hypothesis

gα(Lβ) = L0 ∪
∞∪
n=1

sn(gαn(Lβn)) = L0 ∪
∞∪
n=1

sn(Lαn) = Lα.

Case 2. α = α′ + 1 and β is a limit ordinal. Then βn ↗ β and again using

the inductive hypothesis, we get

gα(Lβ) = L0 ∪
∪

αn<α

sn(gαn(Lβn)) ∪
∪

αn≥α

sn(gα′(Lβn)) =

= L0 ∪
∪

αn<α

sn(Lαn) ∪
∪

αn≥α

sn(Lα′) = Lα.

Case 3. α is a limit ordinal and β = β′ + 1. Then αn ↗ α and every αn < β′.

Thus

gα(Lβ) = L0 ∪
∪

βn<β

sn(gαn(Lβn)) ∪
∪

βn≥β

sn(gαn(Lβ′)) =

= L0 ∪
∪

βn<β

sn(Lαn) ∪
∪

βn≥β

sn(Lαn) =

= L0 ∪
∞∪
n=1

sn(Lαn) = Lα.
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Case 4. α = α′ + 1 and β = β′ + 1. Then

gα(Lβ) = gα(L0 ∪
∪

βn<β

sn(Lβn) ∪
∪

βn≥β

sn(Lβ′)) =

= L0 ∪
∪

αn<α,βn<β

sn(gαn(Lβn)) ∪
∪

α≤αn,βn<β

sn(gα′(Lβn))∪

∪
∪

αn<α,β≤βn

sn(gαn(Lβ′)) ∪
∪

α≤αn,β≤βn

sn(gα′(Lβ′)).

For each of the unions above we can use the inductive hypothesis and we get

gα(Lβ) = L0 ∪
∪

αn<α

sn(Lαn) ∪
∪

αn≥α

sn(Lα′) = Lα,

which completes the proof of property (A).

Proof of property (B). Once again we use transfinite induction. For α = 0 it is ob-

vious that f0(K1) = K0, because K1 ⊂ [0, 2r ] = f−1
0 (K0). Therefore, if α = α′+1,

then by the inductive hypothesis

fα(Kα+1) = K0 ∪
∞∪
n=1

sn(fα′(Kα′+1)) = K0 ∪
∞∪
n=1

sn(Kα′) = Kα.

If α is a limit ordinal then, using property (A), we get

fα(Kα+1) = K0 ∪
∞∪
n=1

sn(gαn(Kα)) = K0 ∪
∞∪
n=1

sn(gαn(Lα)) =

= K0 ∪
∞∪
n=1

sn(Lαn) = Kα,

which completes the proof of property (B).

Finally, we show that the scattered space Kδ+1 is the attractor of {φ,φδ+1}.
Indeed, using property (B) we obtain that

φ(Kδ+1) ∪ φδ+1(Kδ+1) =
(
Kδ+1 \ s1(Kδ)

)
∪ s1(fδ(Kδ+1)) =

=
(
Kδ+1 \ s1(Kδ)

)
∪ s1(Kδ) = Kδ+1.

This finishes the proof of Theorem 2.9.

The space ωα · n + 1 can be represented as the union of n disjoint copies

of ωα + 1. In view of Lemma 2.2, such a space is an IFS-attractor whenever

it is properly embedded into the real line (or some other metric space).

Summarizing:
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Corollary 2.12. A countable compact space X is homeomorphic to an IFS-

attractor (in the real line) if and only if its Cantor-Bendixson height is a successor

ordinal.

As we have already mentioned, taking the space ωω+1 + 1, we obtain an ex-

ample of a countable IFS-attractor with a clopen set (homeomorphic to ωω + 1)

that is not an IFS-attractor in any compatible metric.





Chapter 3

Connected IFS-attractors

Compact connected sets form another interesting class of potential IFS-attractors.

This chapter presents a sufficient condition for a continuum in Rn to be embed-

dable in Rn in such a way that its image is not an attractor of any iterated

function system. An example of a continuum in R2 that is not an attractor

of any weak iterated function system is also given.

The content of this chapter is a joint work with M. Kulczycki [14].

3.1 Arcs as attractors of IFS

Topological properties of IFS-attractors were studied by M. Hata in [11]. He showed

that not every compactum can be realized as the attractor of an IFS, since, for ex-

ample, a connected attractor must be locally connected. It is well-known [19, 8.4]

that a connected compact metric space X is locally connected if and only if it is

a Peano continuum (which means that X is a continuous image of the interval

[0, 1]).

In 1985 Hata posed the question whether every locally connected continuum

is the attractor of some IFS. A negative answer was given by M. Kwieciński [15]

who constructed a counterexample in the plane. A similar result was obtained

by M.J. Sanders [23], who showed that an arc A ⊂ Rn is not an IFS-attractor

if for one of its endpoints a ∈ A the following conditions are satisfied:

1. for all x, y ∈ A \ {a} the length of the subarc of A with endpoints x and y

is finite,

2. for every x ∈ A \ {a} the length of the subarc of A with endpoints x and a

is infinite.

27
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The harmonic spiral [23] is one of such arcs. The example of M.Kwieciński

from [15] may also be easily modified to satisfy these assumptions. On the other hand,

Sanders [23] also showed that every arc of finite length is an IFS-attractor. Curves

as invariant sets were also studied in [25].

Below we present some of the most inspiring results from [23].

Definition 3.1. An arc is a homeomorphic image of unit interval, so A = e([0, 1])

where e : [0, 1] → Rn is an embedding. A partition of the interval [0, 1] is a finite

sequence (xi)
k
i=0 such that 0 = x0 < x1 < · · · < xk = 1. The length of the arc

A = e([0, 1]) is defined by

L(A) = sup{
k∑

i=1

d(e(xi−1), e(xi)) : (xi)
k
i=0 is a partition of [0, 1]}

where d denotes the standard Euclidean distance in Rn. Note that the length

is independent of the choice of the embedding e.

The endpoints of the arc A = e([0, 1]) are the points a = e(0) and b = e(1).

We will sometimes write La
b or Lb

a to denote the length L(A) of a fixed arc A

with endpoints a, b ∈ Rn.

It is easy to prove the following properties of the length of the arc A ⊂ Rn:

Lemma 3.2. For a Lipschitz function f : A→ A it holds L(f(A)) ≤ Lip(f)· L(A).

Lemma 3.3. Given endpoints a, b of A and {cn} and a sequence of points from A

such that c0 = a and limn→∞ cn = b, it holds that Lb
a = L(A) ≤

∑∞
n=0 L

cn+1
cn .

Now we are ready to prove

Theorem 3.4. If A ⊂ Rn is an arc with endpoints a, b such that

• Ly
x < +∞ for all x, y ∈ A \ {b}

• Lb
x = +∞ for all x ∈ A \ {b}

then A is not an attractor of any IFS on A.

Proof. Consider a contraction f : A → A with a Lipschitz constant λ < 1.

We would like to prove that if b ∈ f(A) then f(A) = {b}. To this end, suppose

that f is not constant and b ∈ f(A).

Assume first that f(b) = b. Fix any x ∈ A \ {b} such that f(x) ̸= b (it exists

because f is not constant). Note that the sequence x, f(x), f2(x), . . . is conver-

gent to b. Also note that by the assumptions Lf(x)
x is finite and additionally

by Lemma 3.2

Lfn+1(x)
fn(x) ≤ λn · Lf(x)

x .
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Now we use Lemma 3.3 which implies that

Lb
x ≤

∞∑
n=0

Lfn+1(x)
fn(x) ≤

∞∑
n=0

λn · Lf(x)
x

is also finite, which is a contradiction.

If, on the other hand, f(b) ̸= b then there exist x ∈ A such that f(x) = b

and y ∈ A \ {b} such that f(y) ̸= b. Then Ly
x would be finite and Lf(y)

f(x) would

be infinite, which contradicts Lemma 3.2. This completes the proof that if b

is in the range of f then f is constant.

Consequently, if F is the Barnsley-Hutchinson operator for some iterated

function system and F (A) ⊂ A, then F (A) may comprise of {b} and finitely

many other closed subarcs not containing b and therefore of finite length. But then

F (A) ̸= A, proving that A is not the attractor of F .

Example 3.5. A harmonic spiral on the plane. The construction of this arc

is based on the divergent harmonic series. We start at the origin and proceed

1 unit to the point (1, 0). Then turn left and proceed 1
2 unit. Turn left and proceed

1
3 unit and so on. Continuing this way, we obtain an arc that has infinite length

and spirals endlessly around a point which is related to the harmonic series.

Figure 3.1: First steps of the construction of a harmonic spiral.

We present another version of harmonic spiral, called snake, which is an at-

tractor of a weak iterated function system.

Example 3.6. In the definition we switch to the standard polar coordinate sys-

tem (r, α) on R2, that is (x, y) = (r cosα, r sinα). The snake is made of circular

sectors

On = {
( 1

n
, α

)
∈ R2 : α ∈

(π
2
, 2π

)
}

and intervals

In = {(r, α) ∈ R2 : r ∈
[ 1

n+ 1
,
1

n

]
, α = n mod 2 · π

2
}
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for n ≥ 1. We define the snake S =
∪∞

n=1(On ∪ In) ∪ {(0, 0)}. This is a curve

of infinite length so it is not an attractor of any iterated function system. We

will show that it is a weak IFS-attractor.

Figure 3.2: The snake.

Lemma 3.7. The curve S is the attractor of a weak iterated function system.

Proof. We claim that S is an attractor of a weak IFS {f, g1, . . . , gm}, where

the functions gi : S → S project the snake onto its intervals and cover parts

of the space with finite length. We can choose functions g1, . . . , gm such that they

are contractions, like in [23, Theorem 3.1]. The function f has to fill the remaining

part of the snake which has infinite length. It scales down the modulus of points,

namely

f(r, α) = (f̃(r), α),

where f̃(r) is defined as follows: if r = 0 then f̃(r) = 0 and for r ∈ [ 1
n+1 ,

1
n ] (then

r = 1
n+1 + t

(
1
n − 1

n+1

)
for some t ∈ [0, 1])

f̃(r) =
1

n+ 3
+ t

( 1

n+ 2
− 1

n+ 3

)
=

rn(n+ 1) + 2

(n+ 2)(n+ 3)
.

Note that f(On ∪ In) = On+2 ∪ In+2 for each n ≥ 1, so the set f(S) covers

S \ (O1 ∪ I1 ∪O2 ∪ I2) and
∪m

i=1 gi(S) covers O1 ∪ I1 ∪O2 ∪ I2. Hence the snake

is the attractor of the system {f, g1, . . . , gm}. For completeness we have to show

that f : S → S is a weak contraction.

Simple calculations show that

(a) r > f̃(r) for every r ∈ (0, 1],

(b) f̃ : [0, 1] → [0, 1] is strictly decreasing (that is, f̃(r) > f̃(p) whenever r > p).
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Now fix x = (rx, αx) and y = (ry, αy), two distinct points from S. We have

to show that

d(x, y) > d(f(x), f(y)). (⋆)

Case 1. rx = 0 or ry = 0. Suppose ry = 0. Then rx > 0 and by (a) we obtain

d(x, y) = rx > f̃(rx) = d(f(x), f(y)).

Case 2. x ∈ On ∪ In and y ∈ Ok ∪ Ik for some integers n, k ≥ 1. We may

assume that rx ≥ ry, therefore n ≤ k. From the cosine formula we have

d(x, y) =
√
r2x + r2y − 2rxry cos(αx − αy)

and

d(f(x), f(y)) =

√
f̃(rx)2 + f̃(ry)2 − 2f̃(rx)f̃(ry) cos(αx − αy).

The difference between the squares of those distances satisfies

d(x, y)2 − d(f(x), f(y))2 ≥ (rx − ry)
2 − (f̃(rx)− f̃(ry))

2, (⋄)

because cos(αx − αy) ≤ 1.

Now, if rx = ry then αx ̸= αy, so cos(αx − αy) < 1. The inequality above

becomes strict and we obtain d(x, y)2 − d(f(x), f(y))2 > 0, which is (⋆).

If rx > ry and n = k, then

(f̃(rx)− f̃(ry))
2 =

((rx − ry)n(n+ 1)

(n+ 2)(n+ 3)

)2
< (rx − ry)

2,

so from (⋄) we again get (⋆).

Finally, if rx > ry and n < k, then we get

f̃(rx)− f̃(ry) =
1

n+ 3
+ tx

( 1

n+ 2
− 1

n+ 3

)
− 1

k + 3
− ty

( 1

k + 2
− 1

k + 3

)
=

=
1

n+ 3
− 1

k + 2
+ tx

( 1

n+ 2
− 1

n+ 3

)
+ (1− ty)

( 1

k + 2
− 1

k + 3

)
<

<
1

n+ 3
− 1

k + 2
+ tx

( 1

n
− 1

n+ 1

)
+ (1− ty)

(1
k
− 1

k + 1

)
≤

≤ 1

n+ 1
− 1

k
+ tx

( 1

n
− 1

n+ 1

)
+ (1− ty)

(1
k
− 1

k + 1

)
=

= rx − ry

From (b), both sides of this inequality are positive, so

(rx − ry)
2 − (f̃(rx)− f̃(ry))

2 > 0

and from (⋄) we get (⋆). Thus, we have proved that f is a weak contraction.
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3.2 A Peano continuum which is not a weak IFS-attractor

After the result of Hata [11] it has been an open problem whether every lo-

cally connected continuum in Rn is an attractor of some IFS. The example

of Kwieciński [15] provides a negative answer, however the same question for weak

IFS’s remained, to our knowledge, open. We shall now give an example of a Peano

continuum in R2 that is not the attractor of any weak IFS.

Theorem 3.8. There exists a one-dimensional locally connected continuum P

in R2 with the euclidean metric which is not the attractor of any weak IFS.

Proof. In the definition of the space P once again we switch to the standard polar

coordinate system in R2. For n ≥ 1 let us define p0 = (0, 0) and pn = (2−n, 2−n).

For any n ≥ 1 choose a piece-wise linear arc Ln (consisting of finitely many line

segments) without self-intersections, that starts at p0, ends at pn, has the total

length 2n, and is contained in the set
[
[0, 2−n)×(2−n−2−n−2, 2−n+2−n−2)

]
∪{pn}.

Define P =
∪∞

i=1 Li.

...

Figure 3.3: The space P

Suppose that f : P → P is a weak contraction. We shall examine how many

of the points pi can belong to f(P ).

If f(p0) ̸= p0 then there is a neighborhood U of f(p0) such that d(p0, U) > 0

and U contains finitely many points pi and almost all of the sets f(Li). Note that

only finitely many of the sets f(Li) may intersect the complement of U . Also ob-

serve that each f(Li) covers at most finitely many points pi because the lengths

of Li are not increased by f (this elementary property of weak contractions
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can be proved either by using δ-chains or, as in [15], by using the fact that f

does not increase the one-dimensional measure). Consequently, only finitely many

of the points pi belong to f(P ).

If, on the other hand, f(p0) = p0, then, given n ≥ 1, note that pn cannot be-

long to f(Li) for i < n, because the lengths of these sets are too small to traverse

the whole Ln. But no other point of P can be mapped to pn by f , because f

decreases the distance between p0 and any other point. Therefore, the only point

out of the sequence (pi)
∞
i=0 that appears in f(P ) is p0.

In conclusion, if F is a weak IFS, then only finitely many of the points pi can

belong to
∪

f∈F f(P ), and therefore P is not the attractor of F .

3.3 A class of continua that are not attractors of any IFS

It is elementary to check that every continuum in R is the attractor of an IFS con-

sisting of two contractions. Moreover, any embedding of such a continuum in R is

still an IFS-attractor, just because all non-trivial subcontinua of R are bounded

closed intervals. In dimension two and higher, however, the situation becomes

much more complex. Our results provide a sufficient condition for a continuum

to be embeddable in Rn so that its image is not an attractor of any IFS.

Definition 3.9. Let (X, d) be a metric space, A ⊂ X, x, y ∈ A, and ε > 0.

Consider all sequences x1, . . . , xk such that k ∈ N, x1 = x, xk = y, xi ∈ A,

d(xi, xi+1) < ε. Denote by d̃(x, y,A, ε) the infimum of the sums
∑k−1

i=1 d(xi, xi+1)

for these sequences. Define d̃(x, y,A) = limε↘0 d̃(x, y,A, ε). This limit may

be infinite.

It is elementary that if A ⊂ B then d̃(x, y,A) ≥ d̃(x, y,B).

Theorem 3.10. Let n ≥ 2 and C ⊂ Rn be a continuum. Assume that there exists

an (n − 1)-dimensional hyperplane B ⊂ Rn such that B ∩ C = {p} and C \ {p}
is connected. Assume additionally that for every x, y ∈ C \ {p} there exists Uxy

which is a neighborhood of p such that d̃(x, y, C \ Uxy) < +∞. Then there exists

an embedding h : C → Rn such that h(C) is not an attractor of any IFS.

Proof. By applying an affine transformation we may assume without loss of gen-

erality that B = {0} × Rn−1, p = (0, . . . , 0), and C ⊂ [0, 1] × [−1, 1]n−1. Next,

define h1, h2 : Rn → Rn as

h1(x1, . . . , xn) = (x1,
x1
100

x2, . . . ,
x1
100

xn)

h2(x1, . . . , xn) = (x1,
√
x1 sinx

−1
1 + x2, x3, . . . , xn)

Then define the embedding h : C → Rn as the composition h2 ◦ h1.
Speaking colloquially, h1 transforms C into a sharp needle, while h2 bends

that needle to fit into a thickened-up graph of the function
√
x sinx−1. As a result
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Figure 3.4: The map h for n = 2

of the second transformation the needle becomes, speaking imprecisely, of infinite

length. Figure 3.4 illustrates the process for n = 2.

The map h1 does not increase distances between elements of the space and there-

fore for every x, y ∈ h1(C \{p}) there exists U1
xy which is a neighborhood of h1(p)

such that d̃(x, y, h1(C) \ U1
xy) < +∞.

Note that, outside of any neighborhood U of h1(p), the Lipschitz constant

of h2|h1(C)\U is bounded from above. This implies that for every x, y ∈ h(C \{p})
there exists U2

xy, a neighborhood of h(p) such that d̃(x, y, h(C) \ U2
xy) < +∞.

Consider now a contraction f : h(C) → h(C) with a Lipschitz constant λ < 1.

We would like to prove that if h(p) ∈ f(h(C)) then f(h(C)) = {h(p)}. To this end,
suppose that f is not constant and h(p) ∈ f(h(C)).

Assume first that f(h(p)) = h(p). Fix any x ∈ h(C) such that f(x) ̸= h(p).

Note that the sequence x, f(x), f2(x), . . . is convergent to h(p). Also note that

by the assumptions d̃(x, f(x), h(C)) is finite and additionally

d̃(f i(x), f i+1(x), h(C)) ≤ λid̃(x, f(x), h(C)).

But this would imply that d̃(x, h(p), h(C)) is also finite, while it is not, since it can

be seen from the definition of h2 that d̃(x, h(p), h([0, 1]× [−1, 1]n−1) is infinite.

If, on the other hand, f(h(p)) ̸= h(p) then there exist x ∈ h(C) such that

f(x) = h(p) and y ∈ h(C) \ {h(p)} such that f(y) ̸= h(p). Then d̃(x, y, h(C))

would be finite and d̃(f(x), f(y), h(C)) would be infinite, which contradicts the con-

tractiveness of f , completing the proof that if f takes value h(p) on at least one

argument then it has to be constant.

Consequently, if F is the Barnsley-Hutchinson operator for some iterated

function system and F (h(C)) ⊂ h(C), then F (h(C)) may comprise of {h(p)}
and possibly also finitely many other closed sets not containing h(p). But then

F (h(C)) ̸= h(C), proving that h(C) is not an attractor of F .

The assumptions of Theorem 3.10 are technical and may seem very restrictive.

Its assertion, however, is true not only for the continua that satisfy them directly,

but also for the continua that are homeomorphic to subsets of Rn which satisfy

these assumptions. This significantly widens the class of sets the theorem is use-

ful for. For example, if any two points in the continuum A ⊂ Rn can be connected

in A by a path of finite length, then it can be easily seen that any one-point union
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of A and [0, 1] is homeomorphic to a subset of Rn+1 for which the assumptions

of Theorem 3.10 are satisfied. Moreover, if for a fixed n ≥ 1 a continuum C ⊂ Rn

does not satisfy the assumption with a hyperplane B, but there exists p ∈ C

such that the other assumptions are satisfied, then it is easy to embed C into Rn+1

such that a suitable hyperplane B exists.





Chapter 4

Shark teeth

Masayoshi Hata in [11] asked whether every Peano continuum is the attractor

of some IFS. As we have already mentioned above, a negative answer was given

by M. Kwieciński, however Hata’s question can be also asked in a topological

sense, namely, whether there exists a Peano continuum homeomorphic to no IFS-

attractor. An easy answer is ”Yes”, because every IFS-attractor has a finite

topological dimension (see Theorem 1.18). Consequently, no infinite-dimensional

compact topological space is homeomorphic to an IFS-attractor. In such a way

we arrive at the following question: Is every finite-dimensional locally connected

continuum homeomorphic to the attractor of some IFS? In other words, is there

a compatible metric on each finite-dimensional Peano continuum X such that X

becomes an IFS-attractor? In that case Kwieciński’s or Sanders’ examples do not

solve this problem, because their examples are homeomorphic to very simple IFS-

attractors (actually, Sanders’ examples are topological copies of simplexes or even

intervals).

In this chapter we answer the question above and we present a construction

of a space called shark teeth, an example of a 1-dimensional Peano continuum

which is not homeomorphic to any IFS-attractor. The argument used in the proof

is a topological invariant called the S-dimension.

The results of this chapter are contained in a joint work with T. Banakh [1].

4.1 Property S and S-dimension

We have already mentioned that each connected IFS-attractor X is locally con-

nected. The real reason is that X has property S, defined below.

Definition 4.1. A metric space X has property S if for every ε > 0 the space X

can be covered by a finite number of connected subsets of diameter < ε.

37



38 CHAPTER 4. SHARK TEETH

It is well-known [19, 8.4] that a connected compact metric space X is locally

connected (so it is a Peano continuum) if and only if it has property S.

Definition 4.2. The metric S-dimension S-Dim(X, d) is defined for each metric

space (X, d) with property S. For each ε > 0 denote by Sε(X) the smallest

number of connected subsets of diameter < ε that cover the space X and let

S-Dim(X, d) = lim sup
ε→+0

− logSε(X)

log ε
.

The metric S-dimension is greater than or equal to the standard box-counting

dimension

Dim(X, d) = lim sup
ε→+0

− logNε(X)

log ε
,

where Nε(X) stands for the smallest number of subsets of diameter < ε that

cover X. By a classical result of Pontrjagin and Schnirelmann [22], for each

compact metrizable space X the infimum

dimX = inf{Dim(X, d) : d is a compatible metric on X}

coincides with the covering topological dimension of X. Similarly we define

Definition 4.3. The S-dimension of a Peano continuum X is

S-dim(X) = inf{S-Dim(X, d) : d is a compatible metric on X}

This dimension was introduced and studied in [2]. Note that it can be strictly

larger than the topological dimension. We show that each connected IFS-attractor

has a finite S-dimension.

Theorem 4.4. Assume that a connected compact metric space (X, d) is the at-

tractor of an iterated function system f1, f2, . . . , fn : X → X and

λ = max
i≤n

Lip(fi) < 1.

Then

S-dim(X) ≤ S-Dim(X, d) ≤ − log(n)

log(λ)
.

In particular, X has a finite S-dimension.

Proof. The inequality S-Dim(X, d) ≤ − log(n)
log(λ) will follow as soon as for every δ > 0

we find ε0 > 0 such that for every ε ∈ (0, ε0] we get

− logSε(X)

log ε
< − log(n)

log(λ)
+ δ.
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Let D = diam(X) be the diameter of the space X. Since

lim
k→∞

log(nk)

log(λk−1D)
= lim

k→∞

k log(n)

(k − 1) log(λ) + logD
=

log(n)

log(λ)
,

there is k0 ∈ N such that for each k ≥ k0 we get

− log(nk)

log(λk−1D)
< − log(n)

log(λ)
+ δ.

We claim that the number ε0 = λk0−1D has the required property. Indeed,

given any ε ∈ (0, ε0] we can find k ≥ k0 with λkD < ε ≤ λk−1D and observe that

Ck = {fi1 ◦ · · · ◦ fik(X) : i1, . . . , ik ∈ {1, . . . , n}}

is a cover of X by compact connected subsets, each having diameter ≤ λkD < ε.

Then Sε(X) ≤ |Ck| ≤ nk and

− log(Sε(X))

log(ε)
≤ − log(nk)

log(λk−1D)
< − log(n)

log(λ)
+ δ.

This completes the proof.

4.2 The construction of shark teeth

Theorem 4.5. There is a space M , a 1-dimensional planar Peano continuum,

homeomorphic to no IFS-attractor.

This section will be devoted to the construction of a Peano continuum M

with infinite S-dimension S-dim(M). Theorem 4.4 will imply that the space M

is not homeomorphic to an IFS-attractor, thus proving Theorem 4.5. This out-

come contrasts with a result of Duvall and Husch [6] saying that every finite-

dimensional compact metrizable space X containing an open zero-dimensional

subspace without isolated points (i.e. a Cantor set) is homeomorphic to an IFS-

attractor.

Proof. Our space M is a partial case of the spaces constructed in [2] and called

shark teeth. Consider the piecewise linear periodic function

φ(t) =

{
t− n if t ∈ [n, n+ 1

2 ] for some n ∈ Z,
n− t if t ∈ [n− 1

2 , n] for some n ∈ Z,

whose graph looks as follows

-
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Figure 4.1: The space M

For every n ∈ N define

φn(t) = 2−nφ(2nt),

which is a homothetic copy of the function φ(t).

Consider the non-decreasing sequence

nk = ⌊log2 log2(k + 1)⌋, k ∈ N,

where ⌊x⌋ is the integer part of x. Given k ≥ 1, letMk = {(t, 1kφnk
(t)

)
: t ∈ [0, 1]}

be the k-th row of teeth and I = [0, 1]×{0} ⊂M be the bone ofM . Our example

is the continuum

M = I ∪
∞∪
k=1

Mk

in the plane R2, shown in Figure 4.1.

It is easy to see that dim(M) = 1 because it has a base of the topology consist-

ing of open sets with finite boundaries. We claim that the Peano continuum M

has infinite S-dimension and hence it is not homeomorphic to any IFS-attractor.

To show that S-dim(M) = ∞, fix any compatible metric d on M . Let

R = d
(
(0, 0), (1, 0)

)
be the distance between the end-points of the bone I.

Given ε > 0, consider a cover C of M by connected subsets of diameter < ε

with |C| = Sε(M). For every k ≥ 1 let Ck = {C ∈ C : C∩Mk ̸= ∅ and C∩I = ∅}.
It is easy to see that each C ∈ Ck lies in Mk \ I and hence the families Ck, k ≥ 1,

are disjoint.

We claim that |Ck| ≥ R
ε − 2(2nk + 1) for every k ≥ 1. Indeed, note that each

element C ∈ C meeting the set Mk ∩ I at some point x ∈Mk ∩ I lies in the ε-ball

Bε(x) = {y ∈ M : d(x, y) < ε}. Then the family Ck ∪ {Bε(x) : x ∈ Mk ∩ I}
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covers the kth row of teeth Mk and

R ≤ diam Mk ≤
∑
C∈Ck

diam C +
∑

x∈Mk∩I
diam Bε(x) ≤ ε|Ck|+ 2ε(2nk + 1).

Consequently, |Ck| ≥ R
ε − 2(2nk + 1).

Taking into account that for every α > 0 there exists supk≥1
2nk

kα = A < ∞,

we observe that 2nk ≤ Akα for each k ≥ 1. This implies the lower bound

|Ck| ≥ R
ε − 2(Akα + 1). Let k0 = (R−4ε

4Aε )
1
α and note that for any k ≤ k0, we get

|Ck| ≥ R
ε − 2(Akα0 + 1) = R

2ε . Thus

Sε(M) = |C| ≥
∑
k≤k0

|Ck| ≥
R

2ε
⌊k0⌋ ≥

R

2ε
(k0 − 1) =

R

2ε

(( R

4Aε
− 1

A

) 1
α − 1

)
and there exist constants D > 0 and ε0 > 0 such that for all ε < ε0 we get

Sε(M) ≥ Dε−(1+ 1
α
). This implies that S-Dim(M,d) ≥ 1 + 1

α for every α > 0.

Consequently, S-Dim(M,d) = ∞ for any compatible metric d onM , proving that

S-dim(M) = ∞.





Chapter 5

Topological IFS-attractors

It is worth extending the definition of an IFS-attractor in a topological sense,

without using a metric. We shall say that

Definition 5.1. A compact topological Hausdorff space X is a topological IFS-

attractor if X =
∪n

i=1 fi(X) for some continuous maps f1, . . . , fn : X → X

with the property that for any open cover U of X there is m ∈ N such that

for any functions g1, . . . , gm ∈ {f1, . . . , fn} the set g1 ◦ · · · ◦ gm(X) is contained

in some set U ∈ U .

Note that every compact metric space X is a topological IFS-attractor if for

any open cover U of X the diameter of the set g1 ◦ · · · ◦ gm(X) is less than

the Lebesgue number of U , for some m ∈ N and every g1, . . . , gm ∈ {f1, . . . , fn}.
It is easy to see that each IFS-attractor is a topological IFS-attractor. In the first

section we will show that the space M constructed in the proof of Theorem 4.5

is a topological IFS-attractor. This is a joint work with T.Szarek [21].

5.1 The shark teeth as a topological IFS-attractor

Spaces called “shark teeth” are parametrized by an infinite non-decreasing se-

quence (nk)
∞
k=1. We have shown that the shark teeth M constructed in the plane

R2 with the sequence

nk = ⌊log2 log2(k + 1)⌋, k ∈ N,

is not homeomorphic to an IFS-attractor. In other words, it is not an IFS-

attractor in any metric. Now we show that

Theorem 5.2. The space M from Theorem 4.5 is a topological IFS-attractor.

43
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Proof. We will use functions φ and φn defined in the construction of the shark

teeth. For k ∈ N and the sets Mk, I and M , by the same names we denote

the functions:

Mk : [0, 1] ∋ t→
(
t,
1

k
φnk

(t)
)
∈Mk,

I : [0, 1] ∋ t→ (t, 0) ∈ I and

M : [0, 1] ∋ t→ I(t) ∪
∞∪
k=1

Mk(t).

Note that for every x ∈M there exists a unique tx ∈ [0, 1], such that I(tx) = x

orMk(tx) = x for some k. Therefore we can represent every point of the spaceM

as an element from the unit interval, perhaps with a positive parameter k. Note

that for k ̸= l and for every x ∈ Mk ∩Ml we have Mk(tx) = Ml(tx) = I(tx),

because then x belongs to I.

In three steps we will present the construction of a topological IFS and prove

that M is its attractor.

Step 1. Let F = {f1, f2, g1, . . . , g4, h1, . . . , h4} be the collection of continuous

self-maps of M such that for every x ∈M :

g1|M\M1
(x) =M1(0) g1|M1(x) =M1

(φ(tx)
2

)
,

g2|M\M1
(x) =M1

(1
2

)
g2|M1(x) =M1

(1
2
− φ(tx)

2

)
,

g3|M\M1
(x) =M1

(1
2

)
g3|M1(x) =M1

(1
2
+
φ(tx)

2

)
,

g4|M\M1
(x) =M1(1) g4|M1(x) =M1

(
1− φ(tx)

2

)
.

Thus the union of images of M under every function gi fills up the first row

of the teeth M1 =
∪4

i=1 gi(M). Analogously we construct functions hi which

fill up the second row M2. Now we are going to construct functions f1 and f2
which cover the left and the right side of the rest of the rows. Define function

f2(x) = f1(x) + (12 , 0); so f2 only shifts the values of f1.

For every i ∈ N define Gi =
∪
{Mk : nk = i} as the i-th generation of shark

teeth. We can also view it as a function Gi : [0, 1] ∋ t →
∪
{Mk(t) : nk = i}.

Note that every row in the i-th generation contains the same number of teeth,

which is 2i. By

ki = min{k : nk = i}

we denote the number of the first row of teeth in Gi, and by

Ni = |{k : nk = i}|
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we denote the number of rows in Gi. The function f1 has to transform every

generation into the left part of the next generation, so let si =
Ni+1

Ni
be the number

of rows from Gi+1 filled by one row from Gi. In our case Ni = 22
i+1 − 22

i

and si = 22
i+1

+ 22
i
for every i ∈ N. We want the function f1 to transform the

whole row from Gi into si rows from Gi+1([0,
1
2 ]). Therefore, points x, y ∈Mk∩I

for x ̸= y and some positive k, must have distinct values f1(x) ̸= f1(y) in the same

order on I. To obtain this, every tooth from Gi must be divided into si+1 pieces,

which each of them covers one tooth from Gi+1 and the last one fills a small part

of the bone I. In other words, for j = 0, . . . , 2i − 1 a tooth from Gi

(
[ j
2i
, j+1

2i
]
)
is

transformed by f1 into si teeth from Gi+1

(
[ j
2i+1 ,

j+1
2i+1 ]

)
and bone I

(
[ j
2i+1 ,

j+1
2i+1 ]

)
(see Figure 5.1).

x y

j

2
i

j+1
2

i

f (x)1 f (y)1

j

2
i+1

j+1
2

i+1

f1

s +1i

Figure 5.1: Tooth from Gi is transformed to si teeth from Gi+1 and a small part
of the bone I.

Note that for i, j ∈ N and for the similarity pi,j(t) = t
2i

+ j
2i
, we have that

[ j
2i
, j+1

2i
] = pi,j([0, 1]). Moreover, define the interval Pijk = [pi,j(

k
si+1), pi,j(

k+1
si+1)]

for k = 0, . . . , si. Now we can present the formula for the function f1:

f1|I(x) =
x

2

and for i ∈ N, l = 0, . . . , Ni − 1 and j = 0, . . . , 2i − 1 we have

f1|Mki+l
(x) =

Mki+1+lsi+k

(
pi+1,j

(
2φ( si+1

2 p−1
i,j (tx))

))
, tx ∈ Pijk and k = 0, . . . , si − 1

I
(
pi+1,j

(
2φ( si+1

2 p−1
i,j (tx))

))
tx ∈ Pijk and k = si

We can write M =
∪

f∈F f(M). Indeed
∪4

i=1(gi(M) ∪ hi(M)) = M1 ∪ M2

and easy calculations show that for each i ∈ N we have that f1(Gi) = Gi+1

(
[0, 12 ]

)
∪

I
(
[0, 12 ]

)
and f2(Gi) = Gi+1

(
[12 , 1]

)
∪ I

(
[12 , 1]

)
, so

f1(M) ∪ f2(M) =

∞∪
i=1

Gi ∪ I =M \ (M1 ∪M2).
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Step 2. According to the definition of the functions gi and hi we have

the following property for i = 0, . . . , 4:

diam gi(A) ≤
diam(A)

2
, diam hi(A) ≤

diam(A)

2
for every connected set A ⊂M,

so for every positive m ∈ N and connected set A ⊂M we have

diam gi1 ◦ · · · ◦ gim(A) ≤
1

2m
diam(A) (5.1)

where i1, . . . , im ∈ {1, . . . , 4}, and analogously for the functions hi.

We also have similar properties concerning the functions fi. For any positive

m ∈ N
diam fi1 ◦ · · · ◦ fim(M) ≤ 1

2m
diam(M) (5.2)

where i1, . . . , im ∈ {1, 2}. This arose due to the fact that for every natural i

and j = 0, . . . , 2i − 1

f1

(
Gi

([ j
2i
,
j + 1

2i

]))
= Gi+1

([ j

2i+1
,
j + 1

2i+1

])
∪ I

([ j

2i+1
,
j + 1

2i+1

])
.

Step 3. Let U be an open cover of M . In the last step we are going

to find a positive number m, such that the diameter of φi1 ◦ · · · ◦ φim(M) is

less than the Lebesgue number λ of U , where φi1 , . . . , φim ∈ F . Let us consider

every possible compositions of the functions from F . We will study the diameter

of the image of the space M under this composition. From Step 2 we know

that compositions of m functions taken only from one of the sets {g1, . . . , g4},
{h1, . . . , h4} and {f1, f2} make half of the size of the spaceM (see equations (5.1)

and (5.2)). Note also that for every connected set A ⊂M its images gi(A), hi(A)

and fi(A) are contained in M \M2, M \M1 and M \ (M1 ∪M2) respectively, so

diam(gi ◦ fj(A)) = 0 diam(gi ◦ hj(A)) = 0

diam(hi ◦ fj(A)) = 0 diam(hi ◦ gj(A)) = 0

because they are all singletons. This means that if the functions gi, hi and fi
appear in a composition in the above order, the diameter of the image will be 0.

It only remains to consider compositions of the form

fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjn(M) and fik ◦ · · · ◦ fi1 ◦ hj1 ◦ · · · ◦ hjn(M),

where i1, . . . , ik ∈ {1, 2} and j1, . . . , jn ∈ {1, . . . , 4}. Let

α(k) = Lipf1|Gk
= Lipf2|Gk

be the common Lipschitz constant of f1 and f2 restricted to k-th generation. It is

finite because of the definition of f1. Note that the set fik◦· · ·◦fi1◦gj1◦· · ·◦gjn(M)
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is contained in generation Gk−1, so we obtain

diam(fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjn(M)) ≤
≤ α(k − 1) · diam(fik−1

◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjn(M)) ≤ . . .

≤ α(k − 1) · ... · α(0) · diam(gj1 ◦ · · · ◦ gjn(M)) ≤

≤
k−1∏
i=0

α(i) · 1

2n
diam(M).

On the other hand,

diam(fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjn(M)) ≤ diam(fik ◦ · · · ◦ fi1(M)) ≤

≤ 1

2k
diam(M).

Now fix n1 ∈ N such that 1
2n1 diam(M) < λ and fix n2 ∈ N such that

n1−1∏
i=0

α(i) · 1

2n2
diam(M) < λ.

Now we claim the assertion holds for m = n1 + n2. Indeed, all images of M

under compositions only from {g1, . . . , g4}, from {h1, . . . , h4} or from {f1, f2}
have diameters less than λ, because of the definition of n1. Moreover,

diam(fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjm−k
(M)) < λ

for i1, . . . , ik ∈ {1, 2} and j1, . . . , jn ∈ {1, . . . , 4} because

1. if k ≤ n1 then

diam(fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjm−k
(M)) ≤

k−1∏
i=0

α(i) · 1

2m−k
diam(M) ≤

≤
k−1∏
i=0

α(i) · 1

2n2
diam(M) < λ

2. if k > n1 then

diam(fik ◦ · · · ◦ fi1 ◦ gj1 ◦ · · · ◦ gjm−k
(M)) ≤ 1

2k
diam(M) ≤

≤ 1

2n1
diam(M) < λ.

Similarly, we show that diam(fik ◦· · ·◦fi1◦hj1◦· · ·◦hjm−k
(M)) < λ. The other

compositions transform the whole space M into a single point. This completes

the proof.
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5.2 Generalizations

In fact the construction above can be extended to all shark teeth. If we try

to construct a topological IFS for shark teeth with an arbitrary sequence (nk)
∞
k=1,

we have to deal with the following issues:

1. some Gi are empty.

Then we have to renumber the sequence Gi such that the empty sets

are omitted.

2. si /∈ Z.

Then define si =
⌈
Ni+1

Ni

⌉
, where ⌈x⌉ is the minimal integer greater than

or equal to x. Consequently, the formula for the function f1 slightly changes.

The last row of teeth from the i-th generation has to be transformed into

less than si rows from Gi+1. It can be done by covering some rows from

Gi+1 once again.

3. si is odd.

Then we do not have to cover a small part of bone under every tooth,

so we divide every tooth from Gi into si pieces, like in Figure 5.2.

x y f (x)1 f (y)1

f1

si

Figure 5.2: When si is odd then a tooth from Gi is transformed only to si teeth
from Gi+1.

Consequently, every shark teeth is a topological IFS-attractor.

5.3 Equivalent definition of a topological IFS-attractor

The notion of the attractor of a topological iterated function system was studied

also by A. Mihail and D. Dumitru. However, they use a slightly different definition

of this object.

Definition 5.3. (A.Mihail [17]) A topological iterated function system (TIFS)

on a topological Hausdorff space (X, τ) consists of a finite family of continuous

functions {fk}nk=1, where fk : X → X, such that:
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1. For every K ∈ H(X), there exists HK ∈ H(X) such that:

(i) K ⊂ HK

(ii)
∪n

k=1 fk(HK) ⊂ HK

2. For every sequence {il}l≥1 ⊂ {1, 2, . . . , n} and every K ∈ H(X) such that∪n
k=1 fk(K) ⊂ K, the set

∩
l≥1 fi1 ◦ fi2 ◦ · · · ◦ fil(K) has at most one point.

The attractor of TIFS is a set A ∈ H(X) such that A =
∪n

k=1 fk(A).

Using this definition, Mihail obtained some results concerning the existence

and uniqueness of the attractor of a TIFS and the relation between the TIFS-

attractor and the shift space associated with that TIFS.

For a topological space (X, τ) and TIFS f1, . . . , fn : X → X the shift space

associated with that TIFS is a set Λ = {1, . . . , n}N of all sequences of numbers

from 1 to n. It is a compact metric space with the metric dS defined as follows:

for arbitrary sequences α, β ∈ Λ,

dS(α, β) =
∞∑
k=1

1− δβk
αk

3k

where αk, βk are the k-th element of sequences α, β and δxy is the Kronecker’s

delta. It is well-known that this space is homeomorphic to the Cantor set. For

k = 1, . . . , n we consider the right shift functions Fk : Λ → Λ such that for every

α ∈ Λ,

Fk(α) = kα = kα1α2 . . . .

Note that the family of right shifts forms an iterated function system in (Λ, dS)

and Λ =
∪n

k=1 Fk(Λ) is the attractor of it.

Given ω ∈ Λ, by [ω]k we denote the sequence ω1ω2 . . . ωk and f[ω]k = fω1◦ · · ·◦ fωk
.

Now we are ready to show the result obtained by A. Mihail in [17].

Theorem 5.4. Let (X, τ) be a topological space, F = {f1, . . . , fn} be a TIFS

on X and F : H(X) → H(X) be the Barnsley-Hutchinson operator for F . Then:

1. There exists a unique nonempty compact set A such that F (A) = A (the at-

tractor of F).

2. For every ω ∈ Λ there exists a unique aω ∈ A such that for every K ∈ H(X)

such that F (K) ⊂ K we have∩
k≥1

f[ω]k(K) = {aω}.

3. The attractor satisfies A =
∪

ω∈Λ{aω}.
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4. The function π : Λ → A defined by π(ω) = aω is continuous and surjective.

Moreover for each k = 1, . . . , n it holds that π ◦ Fk = fk ◦ π.

5. For every x ∈ X and every ω ∈ Λ, limk→∞ f[ω]k(x) = aω.

Summarizing, some classical properties of IFS-attractors can be extended

to TIFS-attractors. It turns out however that both definitions of topological

IFS-attractors are equivalent.

Theorem 5.5. Definitions 5.1 and 5.3 of the attractor of a topological iterated

function system are equivalent.

Proof. Let F = {f1, . . . , fn : A→ A} be a TIFS andA =
∪n

k=1 fk(A) be a nonempty

compact set. Then fi(A) ⊂ A for each i = 1, . . . , n so for every ω ∈ Λ and k > 1

f[ω]k(A) = f[ω]k−1
(fωk

(A)) ⊂ f[ω]k−1
(A)

which means that {f[ω]k(A)}k≥1 is a decreasing nested sequence of non-empty

compact subsets of A. We divide the proof into two steps.

Step 1. Suppose that A is the attractor of F in the sense of Definition 5.3.

Let U be an open (finite) cover of A =
∪

ω∈Λ{aω}. This implies that for every

ω from Λ there exists a neighborhood of {aω} =
∩

k≥1 f[ω]k(A) in U , and we can

find an integer nω ≥ 1, the smallest one such that

nω∩
k≥1

f[ω]k(A) = f[ω]nω
(A) ⊂ U

for some U ∈ U . Now we define

m = sup
ω∈Λ

(nω)

and claim that m <∞.

Indeed, suppose that, on the contrary, m = ∞. Then there exists a sequence

{ω(k)}∞k=1 in Λ such that limk→∞ nω(k) = ∞. The space Λ is compact, so there

exists a subsequence {ω̂(k)}∞k=1 convergent to some ω̂ ∈ Λ. From Theorem 5.4

it follows that the function π is continuous, so aω̂(k) → aω̂ when k → ∞. Take

the integer nω̂ ≥ 1, the smallest one such that f[ω̂]nω̂
(A) ⊂ U for some U ∈ U .

Moreover, there exists k0 such that for every k ≥ k0 the element ω̂(k) is close

to ω̂ in the sense that

dS(ω̂(k), ω̂) ≤
1

3nω̂ · 2
.

Since dS(α, β) ≤ 1
3k·2 if and only if [α]k = [β]k, it follows that [ω̂(k)]nω̂

= [ω̂]nω̂

for every k ≥ k0. Thus, for those k we obtain

aω̂(k) ∈ f[ω̂(k)]nω̂
(A) = f[ω̂]nω̂

(A) ⊂ U
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so nω̂(k) cannot be greater than nω̂ and tend to infinity.

We have shown that m <∞. Now, for every ω from Λ we have

f[ω]m(A) ⊂ f[ω]nω
(A) ⊂ U

for some U ∈ U , which means that A is the attractor of TIFS in the sense

of Definition 5.1.

Step 2. Suppose that A is the attractor of F in the sense of Definition 5.1.

The first part of Definition 5.3 is fulfilled by taking X = A and HK = A.

For the second part, we note that for each ω ∈ Λ, the set W =
∩

i≥1 f[ω]i(A)

is nonempty and compact by the Cantor intersection theorem. We show that W

is a singleton.

Suppose that, on the contrary, for every x ∈W there exists x′ ∈W and x′ ̸= x.

Take U(x), an open neighborhood of x such that x′ /∈ U(x). It exists because A

is a Hausdorff space. Now, U = {U(x)}x∈W ∪ {A \W} is an open cover of A.

By Definition 5.1, there exist a natural number m such that for every ω ∈ Λ we

have f[ω]m(A) ⊂ U ∈ U .
If f[ω]m(A) ⊂ A \ W = A \

∩
i≥1 f[ω]i(A) we get a contradiction, because

it would imply that f[ω]m(A) is disjoint from the nonempty set
∩

i≥1 f[ω]i(A).

If, on the other hand, f[ω]m(A) ⊂ U(x) for some x ∈ W , then x′ /∈ f[ω]m(A),

hence x′ /∈
∩

i≥1 f[ω]i(A) =W , which again gives a contradiction.

We have proved that W is a singleton. Consequently, for all nonempty com-

pact K ⊂ A, the set
∩

k≥1 f[ω]k(K) is contained inW , so it has at most one point.

This completes the proof.

5.4 The metrizability of topological IFS-attractors

We tried to find the definition of IFS-attractor independent of a metric, but in fact

every TIFS-attractor is metrizable. Moreover, it is a weak IFS-attractor in com-

patible metric. We present these results, obtained by T.Banakh and W.Kubís

(unpublished).

Theorem 5.6. Every topological IFS-attractor is metrizable.

Proof. Let K be the attractor of a topological IFS F = {f1, . . . , fk}. Let S

denote the set of all finite compositions of elements of F . Define

K = {g(K) : g ∈ S}.

Clearly, K is countable. It is easy to check that it is a network in K. The ex-

istence of a countable network in a compact space is equivalent to the existence

of a countable basis, which in turn is equivalent to metrizability.
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Theorem 5.7. Assume F is a topological IFS acting on a compact metric space

K. Then there exists a compatible metric on K such that each f ∈ F becomes

a weak contraction on K.

Proof. Let S be the free semigroup generated by F , that is the set of all formal

compositions of the form f1 ◦ f2 ◦ · · · ◦ fm, where m ∈ N and fi ∈ F for every

i ≤ m.

Given g ∈ S, define ℓ(g) = m if and only if m is such that g is the formal

composition of m functions from F . Then for every g ∈ S and f ∈ F it holds

that ℓ(g ◦ f) = ℓ(g) + 1. We add idK to S and we agree that ℓ(idK) = 0. Define

Sm = {g ∈ S : ℓ(g) ≤ m}.
Let λ(g) = 1− 1

2+ℓ(g) and define

ϱ(x, y) = max
g∈S

λ(g)d
(
g(x), g(y)

)
,

where d is a fixed metric on K.

First, we need to show that this is well-defined, that is, the maximum al-

ways exists. Let ε = 1
2d(x, y) and find m ∈ N such that d(g(x), g(y)) < ε for

every g ∈ S \ Sm. Then also λ(g)d(g(x), g(y)) < ε for g ∈ S \ Sm, therefore

the supremum above is indeed the maximum of the set

{λ(f)d(f(x), f(y)) : f ∈ Sm}.

Clearly, ϱ(x, y) ≥ 1
2d(x, y), therefore d(xn, x) → 0 whenever ϱ(xn, x) → 0.

Suppose d(xn, x) → 0 and fix ε > 0. Find m ∈ N such that d(g(x), g(y)) < ε

whenever g ∈ S \ Sm. As each f ∈ F is continuous, we can find n0 such that

d(f(xn), f(x)) < ε whenever n > n0 and f ∈ Sm. Hence, λ(g)d(g(xn), g(x)) < ε

for every g ∈ S and n > n0, showing that ϱ(xn, x) → 0.

Thus, we have proved that ϱ is a compatible metric on K. It remains to check

that each f ∈ F is a weak contraction with respect to ϱ.

Fix such f and fix x, y ∈ K with x ̸= y. Suppose

ϱ(f(x), f(y)) = λ(h)d
(
h(f(x)), h(f(y))

)
.

If ϱ(f(x), f(y)) = 0 then obviously ϱ(f(x), f(y)) < ϱ(x, y). Otherwise, we have

0 < ϱ(f(x), f(y)) = λ(h)d(h(f(x)), h(f(y))) < λ(h◦f)d((h◦f)(x), (h◦f)(y)) ≤ ϱ(x, y).

Here we have used the fact that λ(h ◦ f) > λ(h).

On the other hand every weak IFS-attractor is a TIFS-attractor, hence we

have the following characterization (we thank F.Strobin for pointing out the proof

of this theorem which is an easy consequence of the results from [13]):
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Theorem 5.8. A Hausdorff topological space A is a topological IFS-attractor

if and only if A is homeomorphic to a compact metric space which is a weak

IFS-attractor.

Proof. Thanks to the above two theorems it is enough to show that every weak

IFS-attractor is a TIFS-attractor.

First, note that for a weak contraction f : A→ A on a compact metric space

A there exists a nondecreasing continuous function φ : [0,∞) → [0,∞), such that

φ(t) < t for t > 0 and for every x, y ∈ A

d(f(x), f(y)) ≤ φ(d(x, y)). (△)

The construction of that function is based on [13] and goes as follows: for each

natural n ≥ 1 let us consider a set An = {(x, y) ∈ A × A : d(x, y) ≥ 1
n}.

The space A is compact, and the metric d is a continuous map so every set An is

also compact. Now take g(x, y) = d(f(x),f(y))
d(x,y) , a continuous function on An. Note

that g(x, y) < 1 for each (x, y) ∈ An because f is a weak contraction. Hence,

for every positive n ∈ N, there exists βn = sup(x,y)∈An
g(x, y) < 1, so for every

x, y ∈ A such that d(x, y) ≥ 1
n ,

d(f(x), f(y)) ≤ βnd(x, y).

Define a function ψ(t) = β1t for t ≥ 1, ψ(t) = βnt for t ∈ [ 1n ,
1

n−1) and finally

ψ(0) = 0. This map satisfies (△), but it is not continuous. To obtain a continuous

function φ it is enough to take a piecewise linear map with the following graph:

for t = 0 or t ≥ 1 it coincides with the graph of ψ; for t ∈ (0, 1) the graph

is a polygonal chain connecting the points
(
1
n , ψ

(
1
n

))
. Every such point lies

below the diagonal and φ(t) ≥ ψ(t), so φ is the required function which satisfies

(△).

If A is an attractor for weak IFS F = {f1, . . . , fn}, then we can choose one

function φ such that it satisfies (△) with each function from F . Therefore, for

an arbitrary ω ∈ Λ and positive k ∈ N it holds that

diam(f[ω]k(A)) ≤ φk(diamA).

The sequence (φk(t))k∈N is non-increasing so it has the limit a. From the conti-

nuity of φ, for every t we have

φ(a) = φ( lim
k→∞

φk(t)) = lim
k→∞

φk+1(t) = a,

so a = 0 and it is the unique fixed point of φ. That means the diameter of a set

f[ω]k(A) tends to 0 when k → ∞ and consequently
∩

k≥1 f[ω]k(A) has at most one

point, so A is a topological IFS-attractor.
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5.5 Examples

Summarizing the results obtained in this dissertation, we now present some ex-

amples. We also classify them as IFS-attractors, homeomorphic to IFS-attractor,

weak IFS-attractors and homeomorphic to weak IFS-attractor (hence TIFS-attractors).

Example 5.9. The snake - a curve presented in Example 3.6. It is not an IFS-

attractor as a consequence of Theorem 3.4, but, as a curve, it is homeomorphic

to the unit interval [0, 1], which is an attractor of IFS {x
2 ,

x+1
2 }. In Lemma 3.7

we have shown that the snake is a weak IFS-attractor, so it is also a topological

IFS-attractor.

Example 5.10. The shark teeth - a Peano continuum presented in Section 4.2.

We have shown there that it is not homeomorphic to any IFS-attractor. We do not

know whether it is a weak IFS-attractor, but we know that such example exists

(not necessarily in Rn), because the shark teeth is a topological IFS-attractor

(Theorem 5.2), so homeomorphic to some weak IFS-attractor.

Example 5.11. The convergent sequence K from section 2.3. It is not

an IFS-attractor and even a weak IFS-attractor as we have proved in Theorem 2.3,

but it is homeomorphic to a geometric convergent sequence, which is of course

an IFS-attractor (and a weak IFS-attractor). Hence the sequence K is a TIFS-

attractor.

Example 5.12. The scattered space ωω+1. As a scattered space with a limit

height it is not homeomorphic to any weak IFS-attractor (Theorem 2.7). Conse-

quently it is not (homeomorphic to) a TIFS-attractor.

We collect the above consideration in the following table:

homeo. to weak

example IFS -attractor IFS-attractor IFS-attractor TIFS-attractor

× X X X

× × ? X

× X × X

ωω + 1 × × × ×
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Note that all Peano continua presented above are TIFS-attractors. The fol-

lowing problem remains open:

Problem 1. Is every finite-dimensional Peano continuum a topological IFS-at-

tractor?

We already know that shark teeth are TIFS-attractors. D. Dumitru showed

in [5] that the union of a Peano continuum and a segment such that their inter-

section is a singleton, is the attractor of a topological iterated function system.

This can be easily extended to any Peano continuum P containing a “free arc”

(a segment I such that I ∩ P \ I consists of one or two points), but in general

the problem above seems to be still open.
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List of Symbols

and Abbreviations

Notation Description Definition

d a metric on a space

B(x, r) the open ball of radius r centered at the point x page 3

fn n-times composition f ◦ ... ◦ f page 3

H(X) the space of nonempty, compact subsets of X page 3

A the closure of the set A page 3

diam the diameter of a set page 3

|A| the number of elements in the set A page 3

dist(A,B) the distance between sets A and B page 3

dist(x,B) the distance between the element x and the set B page 3

distB(A) the distance from the set A to the set B page 3

dH the Hausdorff distance page 3

F the Barnsley-Hutchinson operator page 5

dim the topological dimension of a space page 7

Hs the s-dimensional Hausdorff measure of a set page 8

dimH the Hausdorff dimension of a set page 8

X ′, X(α) the Cantor-Bendixson derivative of the space X page 12

rk the Cantor-Bendixson rank of an element page 12

ht the height of a space page 12

A+ x the shift of the set A by x page 14

LIM(α) the set of all limit ordinals ≤ α page 19

L(A),La
b the length of the arc A with endpoints a, b page 28

S-Dim the metric S-dimension page 38

S-dim the S-dimension page 38

Λ the shift space page 49

dS the metric on the shift space page 49

[ω]k k first elements of the sequence ω: ω1ω2 . . . ωk page 49

fω1...ωk
the composition fω1 ◦ · · · ◦ fωk

page 49
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